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Abstract

Let G be a bounded convex set, and f. the projection onto G, and

(j} a bounded random process. Projected algorithms of the types + =

nlG(X IE + a b(X,, Qn)) (or Xn+s - nG(Xn + anb(XAn)), where 0 < an -. 0, Ean

- a) occur frequently in applications (among other places) in control and

communications theory. The asymptotic convergence properties of (X:) as

a 0, en -, have been well analyzed in the literature. Here, we use large

deviations methods to get a more thorough understanding of the global

behavior. Let 0 be a stable point of the algorithm in the sense that X-

o in distribution as e 0, ne a. For the unconstrained case, rate of

convergence results involve showing asymptotic normality of ((X -)//T,

and use linearizations about O. In the constrained case 0 is often on 00,

and such methods are inapplicable. But the large deviations method yields an

alternative which is often more useful in the applications. The action

functionals are derived and their properties (lower semicontinuity, etc.) are

obtained. The statistics (mean value, etc.) of the escape times from a

neighborhood of 8 are obtained, and the global behavior on the infinite

interval is described.
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1. Ihtrdcto

*.., Let qi('), i ( k, be continuously differentiable and let G - (x: qi(x)

4 0, i 4 k) be a compact convex set which is the closure of its interior. Let

(4n) be a bounded sequence of random variables and b(.,.) a bounded

function with b(.) uniformly (in I) Lipschitz continuous. Define lbj(x)

to be (nearest point) projection of x onto G.
YC/

The projected recursive (or stochastic approximation) algorithm--(-4)-

arises frequently in applications in control and communications theory.

X° X

S(1.1) X -= (Xn + ib(XnI,tn)), x 6 Rr, X - x. given(G

"-,-There is a sizeable literature (e.g., [1) to [5]) concerning its asymptotic

properties as,. - o with in - t or in -. Often a is replaced by a

'stochastic app)oximation' sequence (an) with an -* 0, an e., and Ea-

The methods,'of analysis are similiar in both cases, except that the latter case

(an o) illows the possibility of w.p.l convergence of (Xn).

Typical results are the following. For a velocity vector v, define the

projection of v at x a G by lg(x,v) - lim [lNG(x + Av) - x]/A and write
A

b (x) Eb(x,) (b(.) to be redefined below). The equation

(1.2) x - no(xlb(x))

represents the projected dynamics on G for the ODE x -b(x). Let x(.)

\/

/A.,..LS e -f rAd.t,7
F. )P- . : . : .t. 5
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denote the piecewise linear interpolation of (X ) with interpolation interval

e. Under reasonable conditions, X converges in distribution to the set of

stationary points of (1.2), as i 0 and en - ; also xE(.) - x(.), a

process which satisfies (1.2). If 'x) is a gradient of the function -B(x),

then the limit points are the Kuhn-Tucker points for the problem of

minimizing B (.) on G. Rate of convergence results for (1.1) are unavail-

able. For the unconstrained case the 'rate' results are of the following form.

Let X: - e in distribution as -0, an -a. Define U, = (X," - )/,

and let UE(.) denote the continuous parameter interpolation (interval E).

Then, under the appropriate conditions, Ul(ta+.) converges weakly to a

stationary Gauss-Markov process as 1 0 if tl - fast enough [12] (with

a similar result for the stochastic approximation case). The result is based on

a local linearization about O, and the rate result does not fully exploit the

dynamics of the iteration. Such a linearization cannot, in any case, be done

for (1.1) when the limit e is on the boundary &G. Some results for this

case are in [5], where (Xq) is Markov, and (under appropriate conditions)

(XE - e)/e is shown to converge in distribution as a - 0, where XE is

distributed according to a (unique) invariant measure for (1.1).

Here, we use the theory of large deviations to get a better picture of the

asymptotic properties for (1.1). Let D denote a neighborhood of * (all

neighborhoods are with respect to G), with e a stable point of (1.2) and

with D in the domain of attraction of a Let TD - min (t: xE(t) 4 D),

define Cx[O,TI to be the set of G-valued continuous functions on [0,T] with

initial condition x, and let Px denote the probability measure given that

X = x. We always use d(.,.) to denote the (sup norm) distance between

i
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functions in Cx[O,T ], as well as the sup norm distance between points in a

Euclidean space . As special cases of our large deviations results, we obtain

estimates for quantities such as

(1.3) lim E log Px(T- D T)
V

(1.4) lim e log Px(x6 (.) E A) , A C CjO,TJ
6

lim log E rE

The limits in (1.3, 1.4) are important in studying the asymptotic

properties of (X) and are often of greater interest than 'local' results of the

type of limits of suitably normalized (X - ). 'We can obtain the

(asymptotic) locations of the exit from D and the most likely escape routes,

all of which are important in applications. A comparison of (1.3) for

different algorithms yields information on their relative stability. They

exploit more of the structure of the algorithm than the 'local' limits do, and

often provide realistic information, e.g., estimates of the time spent in a

neighborhood of a stable point, etc.

The paper is organized as follows. In Section 2, various terms from the

theory of large deviations are introduced, and the problem (on a time interval

[0,T]) formulated. Sections 3 and 4 contain some technical results concerning

the action functional and approximations of (1.1). These are put together in

Section 5 to get the general large deviations result. Section 6 concerns the

mean escape time of (1.1) from a neighborhood of a stable point of (1.2) and

-p
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in Section 7 we remark on some extensions to the global behavior of (1.1) on

the infinite time interval [0,.], the character of movement from stable point

to stable point and on the stochastic approximation case.

-°*
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II. Problem Formulation- Assumotions and Definitions

Let T/ be an integer and define <j: ih/E

Suppose that the limit (defining 6(.)) in (2.1) exists uniformly for x C G:

(2.) , iN-i
(2.1) lir- E b(x.t) b(x)~~~N N 0 bx ) =

Suppose that there is a function H(.,.) such that for each A > 0, the limit

in (2.2) exists uniformly for (x1,a1) in any compact set.

T/&-I T/A-l IN+N-i
(2.2) r A H( 1,x3) = lim- log E exp E ai' q b(xi,tj).

i=O N N i=0 j=iN

H(.,.) is obviously continuous, and we suppose that H(.,x) is continuously

differentiable. The limits exist and we have the differentiability in a if

( i} is a finite state ergodic Markov chain (see [7], where the argument is

based on one in [61) or if tn - E g-kqak and (4} is i.i.d., bounded,
k

Eklgkl < * and 16 - 0 for k < 0 [8]. Define the usual Legendre

transform L and action functional S by

L(p,x) - sup[PIc - H(ax))
a

S(T,,) - f L(j(s), (s))ds for (.) absolutely continuous e CJO,T],

0

- * otherwise



-6-

L(.,.) is lower semicontinuous (I.s.c.), L( .,x) is convex, and S(T,.) is l.s.c.

[6]. The sets U(x) - (0l: L(P,x) c -) and U0(x) - U(x) - E(x) are convex

and are uniformly bounded since b(x,t) is uniformly bounded [7]. Assume

that U(-) is continuous in the Hausdorff topology.

Define B(x,A) - (v: IIG(x,v) - fl0(x.0)) , the set of 'velocities' having the

same projection at x as p has. B(.,.) is upper semicontinuous (u.s.c.)

in the Hausdorff topology. Define

(2.3) LG(PIx) - inf L(vx)
vi B(x,P)

By the l.s.c. of L(.,.) and u.s.c. of B(.,.) ,LG(.,.) is I.s.c. For ()

absolutely continuous, set

(2.4) SG(T,o) - (((),~)d

and define SG(T,o) - -otherwise.

Under some other conditions to be introduced below, the main result of

the next three sections is that S0 (T,eo) is an action functional for X16(-) in

that S(0(T,.) is l.s.c., and for A c Cx[O,T] (with interior AO and closure A),

(2.5) - inf SG(T,*) 4 li a log P31(X'(.) *A)

Ci C.n log Px(x"(.) iA) if-inf SG(T,*)
se
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Owing to the presence of the boundary, the analysis is somewhat

non-standard. The typical results of interest require that the boundary be

taken into account. See, e.g., Fig. 1. where D is a set in the domain of

attraction of e, a stable point of (1.2), and the arrows indicate the flow lines

for (1.2). With the indicated 'typical' U(x), the most likely escape paths from

D are along the boundary [a,b].

To relate (2.5) to (1.3), let A - (4(.): 0(O) - x, 0(t) 4 D for some

t 4 T).

Write the vectors x,b,p,etc. as (x,,xs), (bb 2 ), (, 1 ,), etc., where xb,

have dimension r, and x2,b,, have dimension r2  for some r,,r2 . E,,

(resp., £2) below is r, x r1 (resp., r2 x r2 ). For the purposes of

simplifying the analysis from Section 4 on, we make an additional assumption.

Define E(.) and EN(.) by

1 N
(2.6) lim- coy E [b(x,tj) - b(x) a lim TEN(x) E £(x)

N

11 1
- [:::(: ]11x

We use either of the two cases. CasM I (non-degeert), where E(x) is

positive definite on G. C= 2 (d, where Eu(X) = E2 1(x) - E12(x) I

0, and 1 2 (x) is positive definite on G. These cover the typical cases in

applications. In Case 2, L(P,x) = * unless -, b(x). Define U.(x) -(P :

".-' .""- . ."". .- ." ." .' ,'""% -" " - .-" * ." "."-" - -' -. . .' '." . .- .-.- , '-, ''-,- '-. .,, " • . """"*". ", "--.
' :.= '" "' -' . ' ' . J'.,*- ..'-:- .- ' " , "-" ."- ," "- '. ::% ". , - , . """ ,"""% ','"% ,-" " S, .¢

m ~lm - o - . . . .. , ' " '



L(b,(x),D2 ,x) < a and define the &-nero sets U5(x) -(P 41 U(x): d(P,GU(x))

S6), Ur~l(x) - (PI a U,(x): d(DP,U,(x)) 6)

Non-derenerrAte case. H(.,x) is strictly convex in a neighborhood of

a- 0 , uni formly in x in G, and for any 5 > 0 L(.,.) is uniformly

continuous f or (p,x) a (US(x), x a G). Also L(D,x) -0 iff p - E(x), and

there is a neighborhood N of the origin such that N + b;(x) CU(x) for all

x e G [71] and L(x) + .,x) is strictly convex on N, uniformly in x in

G.

Degenerate Case. Here the definition (2.2) reduces to

H(ax) -all b1(x.>- + H,(a,,x),

where H,(.,.) is defined by (write cl - jj,%j

£ T/A-I
(2.7) EAH 2(a21,xj) Jimn log E exp r aq, r b,(xj,Q3

i N N i=O JOEI1

Let L2,(D3,x) be the dual of H2(a,,x). Then H,(.,.) and L 2 .)have

the properties ascribed above to H(.,.) and L(.,.); also L(p,x) -L, (P2 ,x)

if U1  b(x) and L(DAx) -* otherwise. The following result will be

useful.
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Le aI. LeI vr E U6 (x) and v- V. Then L(vSx)- L(vx).

FU 6 >0,

(2.8) L(b(x) + (l-S)v,x) 4 L(b(x) + vxj x s G, all v.

The first assertion is in Freidlin [61. The second is a consequence of the

convexity of L(.,x) and the fact that L(Qx),x) - 0, L(b(x) + vx) I 0.

s

-* .

a *o.
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III. Discrete Anoroximations: Preliminary Formulation

Owing to the boundary SG, it is hard to let the large deviations results

for (1.1) directly. We do it in a sequence of approximations, which get 'closer'

to (1.1), and for each of which we can get a large deviations result from the

preceeding one. We define the approximations in this section. 4.) and

*(.) denote arbitrary functions in Cx[0,T. For A > 0 (w.l.o.g. we let

T/A and A/c be integers, with NA = T) define 01 to equal (na) for

a L, and define the sequence (Yi, - , i 4 N) by Yo' ' = x and

(3.1) Y :I yE*. + g E
J=A1

Let 4 (.) denote the piecewise constant (on intervals [nAnA + A)) inter-

polation of (4ia)). We use 4A' to represent the samples (t<ia), o < i 4 N).

We first state a large deviations result for (3.1), then use the 'contraction'

principle to get such a result for a projected form of (3.1), and then take

appropriate limits as A - 0. In [6], Freidlin developed the large deviations

theory for (3.1). The details in [6] were for a continuous parameter case, but

the results and methods would be identical for the discrete parameter case

(3.1). In particular, the following results hold. Define 91, by

N-I 41(i&+&) - 001-)

(3.2) S4 ,*T,o) - I A L , 441)).

o A



Then P"(T,o) is an action functional for (Y", i4 N) in the sense

that for any Borel set B in (Rr)N

(3.3) -inf S*"(T,o) (jim_, log P,(Yi o < i 4 N) a B)
OAGBO G

lim IElog P((Yi < Oi 4N) GB)

4 - inf_ S(T,o) .
Ae B

For e() C. [0,T], define

(3.4) S0 (T,*) , inf S (T.)
f

where the inf is over the set

(f: f(*(iA) + fliA+A) f(A)) " .(iA+A), 1 4 N-1).

For later use, it is more convenient to rewrite (3.4) in the form

(35)N-i f(i&+&) - ((IA)
."(3.5) SG(T,) -AinfL r_ _ _ IA)S T 0 f

4

°5 **f..
5

.* r,~~~~ ~ ~~~-..--.
S , ,:* S , * .'?% %%-
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where the inf is over the same set as for (3.4). By the 'contraction principle'
f

([9],p5), SA(To) is the action functional for the 'projected' sequence

WOv X i 4 N) defined by X' , t 
- x and

(3.6) X. - fnG (Xi + r b(4, .
•. JEI i

In the next section we prove (Theorem 1) that S,lT,,) a SG(T,,) is an

action functional for the next approximation (xA, i f N) defined by X,"

- x and

E,A 'A 49A
(3.7) Xi+ 1 =!G (X i + 4 E b(X i

J.l t

Let xEA(.) denote the piecewise constant interpolation of (qA)

(interpolation interval A). For a set A c CJJ0,T] it will sometimes be

convenient to use the 'sampled' notation x6A(-) a AI to mean that XA =

"(iA) for i 4 N for some () r A.

In Theorem 2, the l.s.c. of S0(To) is proved, as is the relation

(3.8) -inf S,(T,*) 4 lim lim a log Px(x6'-(.) a AI)
*,EA O

C lim lIm I log Px(xf'&(.) o A&)
A G

- infS0 (T,*)

*. . . ..o.

,* .** #"'..... .. _ .... L .L .. , ta . ',. .. . , . ',,,... lia % %, :.... | .. ~.. .
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In Theorem 3 we show that xl(.) and xE9A() are 'close' in the

following sense. Let d(x(.),O(.)) 4 6. Then there is a 5(,-0 as s 0)

such that dX~()(.) s. and conversely. This result and (3.8) will enable

us to get the desired large deviations result in Theorem 4.
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Write' X6~ 6 (Xj,,, 0 < i 4 N), XIE, A - (X, As 0 < i (N), 4£ =

(4<4i), 0 < i fN).

1Theorem 1., For each A > 0 , SA(T,o) is an action functional for

XC'•; i.e.. for any Borel set B in (RrI)N,

-inf SA(T,o) ( lim a log Px (Xf u B ) ( limu og Px(XG ,£ u B)

(4.1)
i - if SA(T,o) .

Proof. Given 6 >0, there is a 5 > 0 (where 6 -. 0 as -. 0) such

that

"". ~d(X 't4t O*t) < Sili d(XV
t  

St

To see this, write *i*) = XaA + at, where Cai 4 S, and

(4.2a) X RG (XI + a E b(Xi +
i+1 Jill

Z.
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The existence of a suitable 61 follows from this and the relation

I1G (x) - nG(x)i ix-x'l (due to convexity of G)

and the uniform Lipschitz condition on b(-,).

Similarly there is a 62 > 0 (where 6 - 0 as s -0 ) such that

d(X E' A , * )  = > d(XE*",AA) .

Thus

(4.3) P(d (X" 4,&) < 62%P P, ( ) d(X *,A) < ,1)

it .(4.4) .,×,' >< ,,5 2)c'', < 6)

The result follows from (4.3) - (4.4) in the standard way [6]. In

particular, given B (with non-empty BP) and h > 0, there are (.) with

f. BO and small 6,s t, such that

Px(X ' ,A B) , P1x(X "6A B0)

P(d(XEq,A ) < 5)

Pxld(X4,At,*) < S}

exp - t [ s T,,) + h]
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for small s. The left side of (4.1) follows from an appropriate choice of *

(a 'tail' element of the infimizing sequence). The right hand inequality of

(4.1) follows from a similar approximation arguement. Q.E.D.

T SG(T,.) is l.s.c. Foriach A a CJ0,TI,

(4.5) lim inf SAT,*) )inf S,(T,o).

For each (.I for which Sr(T,*) < , there are piecewise constant (on

intervals of length A) functions *,(.), *.() converaina uniformly to (-)

(4.6) lim SG (T,*A) C S( (T,o) .
!A

The ineoualities (3.8) hold.

Proof. Part I. The proofs for the degenerate and non-degenerate cases are

essentially the same and we do the latter case only (for the degenerate case,

use U6_ in lieu of UG below).

Proof of the l.s.c. of S(T,.). Let %(-I " (.). The infimizing v is

attained in inf L(v,eP(s)). Let VI(.) be a measurable selection
o @v B(sP"(s},*P(s))

M!....... .. . . -.............. .......... ,...

e . oe . . . . . . . . . . . ..o. . .
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*[II, Thm.4.1] of the minimizer and write it as l(s) = vn(s) + b((s)). Using the

uniform continuity of L(.,.) on (P,x : 0 i U6 (x), x a G) for 6 > 0 we have

fi- SG(T,*n) - ! L JL (On(s)) + vs(s), .n(s))ds

n

(47) lim lim L bnls)) + (i-6)vn(s),*Pns))ds

- lim lir + (L-s)vns ,() S

6 nj 0

lim lim lim LT 1b'(s)) (l-)vn(s),e(s))ds

6 A I1nJ r* .

lim lim N-i iA+A
"- f ["s(s)) + (I-)vn(s)Jds ,&))- a J- A 1 n 0 iA

where at 0 as A 0 for each 6 > 0. The first inequality uses

Lemma 1, and the last inequality follows from Jensens' inequality and the

convexity of L(.,x).

The selection theorem 4.1 in [if] uses a bounded u.s.c. function and a
maximization. But a slight modification works for our case, since the
.s.c. L(.,.) is bounded from below.

%
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Choose a subsequence such that j vI(s)ds converges, with limit denoted

by (absolutely continuous since the U(x) are bounded) V(.) , and write

V(t) - J0' v(s)ds. By the l.s.c. of L(.,.) and Fatou's lemma, we can continue

the string of inequalities in (4.7) as

(4.7') l -! f L(b(*(s)) + (l-6)v(s),M(s))ds

• L(b(.s)) + v(s),*(s))ds

If II,(.(s),b(o(s)) + v(s)) - .(s) for almost all s ( T we are done, since in

that case (for almost all s) b(*(s) + v(s)) s B(*(s),*(s)) and

L(b(*(s)) + v(s),*(s))

(4.8) 1 inf L(v,*(s)) - LG((s), (s))

v e B(*(s),o (s))

Thus, we need only show the projection property below (4.7') for b(*(s)) +

v(s) V(s)-

If for some s < T, (s) a GO, the interior of G, then V"(t) , *P(t) for

almost all t and large n, on some open interval containing s. This

implies that V(s) - (s) for almost all s such that *(s) s GO. Now, let

"(s) a OG on some interval. In particular let I - [a,b], a < b, be such that

(rearrange the indices is necessary) for some 6 > 0, and integer i and all

s a 1, qi(,*(s)) 0 , i A. ,q(,*(s)) 4 -S < 0, i > 1. Def ine the set G(s) - (y:

" ... . ...."" " ... e'.'".. .. o.......'.. l. .. '. . . . l . e . ,I ,~tl. e I Q
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qy) 0, i (i). Let CQx) denote the cone generated by the outer normals

to (y: qi(y) 40), i 4 , at the point x. Then C(e(s)) C(.(s)) for s s 1.
A

Define the 'projection error' v (s) by

Vs - n(s) N0 0( (s)v ())

Then ;P(s) e C(OP(s)), if ef(s) e &G(o). Otherwise nh(s) - 0. Extracting a

convergent subsequence if necessary, there is an absolutely continuous function
A

V(.) such that

A l

Note that ()moves orthogonally to C((s)) at s (recall that the

active constraints for o(s) do not change for s a 1). Since 40(.) ()

and o(s) e SG(o) on 1,

*P(a) + f(Vf(s) - n(s)]ds *(a) + [V(S) - (s)Ids s (t), t 4 b.

Thus v(s) s)- (s) f or a.a. s i I. By construction, %IS) ± V(s)~ S)

and v'(s) a C(*(s)) f or almost all s a 1. Thus 16~(*(s), V(s)) - fl((s), V(s)

V(S) + V(S)) _ fl((S), V~)- (s)) WOW Vl(s) s)). a.a. s a 1. By this

method, we can show that ;(s) - fl(((s),T'(s)) for &.a. s s [0,T] and the

'projection' requirement below (47') holds. Thus S0(T,.) is l.s.c.
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Part 2. We can write

S (T.*) - inf L(u, OA(s))ds

where on the interval [iAi + A), inf is the inf over all u such that
U

.G;((iA) + AU) *(iA) (iA + A) - 0(iA)

-. A A

By using this and an argument very similar to that used to get the l.s.c.

property in Part 1, we can show that

(4.9) S a (T,*) Sc(')

Also, if *A(.) (.) ( ) being piecewise constant), a similar argument

yields

" lira A
(4.10) m S(T.*A) SG(T).

We now prove (4.5). Let infSG(T,*) < * and let *o(.) attain the
06A

inf. Let (piecewise constant) *A(.) yield the inf in inL S(T,*). Since

(([A(iA + A) - *AliA))/A, iA 4 T) is bounded, we can extract a convergent

subsequence of the piecewise constant functions (*A(.)) with an absolutely

continuous limit (-). Then by (4.10)

ft. .f. .. f . .. . t f'°t ** . . .
ftf. f. f.f t f. ft *f -. ff~ttt ~ f * t t t t ... .f.f...... .ff*f . . . . .

ftf f * - tf
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which implies that (4.5) holds, together with the right side of (3.8). If

inf SG;(T,o) - -, then the above argument yields that UMi SAI(T,O1  also.
AE A

Inequality (4.6) yields the left side (3.8), by use of the following

observations. (See Part I for a related argument.) If AP is not empty, then

there is a 'nearly infimizing' *b(*) e A0  and a 6 > 0 such that for small

CA

pX(X1,A.)6 AA) pk(XCA(.) c (AA)0 )

(4.11la)

Given h>O0 there is a s > 0 and co >0 such that for e 4 o and

small A and .) () close enough to V.), we can continue the

inequalities as (using (4.6))

SP(d(x (;FA 'Ar" )

(4.11 b) )exp ';A, [s (TAi~ + h]

Sexp - .[SG(T,,.) + 2h].

Thus, to get the Lh.s. of (3.8) only (4.6) needs to be proved.

To do this, we adapt an argument of Freidlin [6].
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Part3. Proof of (4.6.L We can write

S(T*) " inf sup [a'v - H(%.o())]ds.
4 

v E B(b(),(s))

The inf is realized; let .) be a measurable selection of the minimizer

and define V (t) = x + fo V(s)ds. We have

N-i
(4.12) S0 (T,4) I Esup J+[alv(s) - H(*,*(s))]ds.

i i=:O a

The sups in (4.12) are attained at some (a, 0 ( i ( N). There are

[ia,iA + A) such that

,,a: * i H(:+,Hsi) ).

Define *A(.) to be the function with value 4() on [iAiA + A). As

A 0, ,#'A( . 
*) uniformly on [0,T]. Thus

N-i
S0 (T,#) I °£ A [V(i&+&) - V(iA)) -H(%qA) )

01 A

N-i
(4.13) MY AL (i+) - V7i, 4,(iA)

."*','e**T"". . ., . . .. 'Nj -... ' ' 7 . . ' . .- 4'.*. * . .. S . ;t"..1 " -. '.."- ... ''.." . : ..-. .. "..% .'. ..
." 

A- " , - ""r _ . . , , , " . , . ,.S, . " .
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Define o,. to be the piecewise linear function with samples %~(o) -x and

oA(iA+A) - flG(*,(iA) + V (iA+A) -V(iA)). Then by (4.13)

N-i
SG(T.*) I A inf L(v, *A(A)

i=0 v nGOLA V) -AiAA

A proof similar to that of Theorem 3 below yields that 0,6(.)

uniformly on [0,T]. Thus (4.6) is proved. Q.E.D.
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V. Larte Deviations Results for x"(.).

In order to extend Theorem 1 (for the xEA(.) process) to the x6(-)

process, we need to show that the processes are close for small ,A. Let A =

k , k being a large integer. Recall the definitions

(5.1) X "  ,G(X + E b(l',C), I= (ik (j ik+ k), i ( T/A
(5.2 + nWX . :b tjjeI1

(5.2) 1 G(X , j ( T/e. kT/A

To extend the large deviations results to x6(.) it is sufficient (Theorem

4 below) to show that for each I < *, < () and 5 0, there are 5 > 0

which tend to zero as 6 0 such that for small enough A

i 
• ;.(5.3) d-w()@-) I .d(xG(.),*.)) < 5

Let P= b(cj.),) and define the processes (Xn 4 T/a), (Xik

i 4 T/A):

X+ flo(Xn + Go) , O - O x,
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-EA -*,A

X k - nQ(Xk + ),
jei

and their continous parameter interpolations IV(.) (interval e) and E,6(.)

(interval A).

By the convexity of G and the Lipschitz condition on b(.,t), given

S < 0 (resp., 61 < 0) there are ; (reip., o'i) going to zero as 6 (resp.,

6') goes to zero and such that

d(!-A(')'4) < 6 1 -P d(x'A(.),*) < 6 w d(-A(.),o) < 62

6 'S d(x'(.),*) < 6 . d(I(-IO) I

Thus, to show (5.3), we need only show that d(i"(-), 7'(-)) 0 0 as A 0,

A/e *. We will actually bound j i -  k 1, sik C T.

For notational convenience, let ji 1 l and absorb any other bound into

the a.

The basic idea is to show that if the two processes ever separate by

A'/2 , then the maximum rate of growth of the separation is then slow enough

for them to stay close. The following lemma will be used the proof.

Lemma 2 . I 1,x 3 kin O,.w.th v-xI-x r  Eix y >. Lt y 1 .

Ny(x,) Ai G, y2 e N,(x1 ) ,gnd w- Y " rT

-.. 1 .:. W .2 .-.--..

7 .-
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(5.4) <flG(Ys) " Y, > 4 yIWn/gv
IVI

Proof. (See Fig. 2) If y2 6 G, there is nothing to prove. Let y2 4 G.

Consider the hyperplane defined by the normal l0 (Y2 ) - Y2  and point Y2.

Since G is convex, x2 lies on the same side of this hyperplane as does

n(G(y2). Thus

<I1o(Ys) - Y2, X - Y ) 0 or

<nG(Y2) - Y21 (x2 " x1) + (xI " YS)>  0 which implies

v
"1( y2) -Y2. -- <fl0(y2) y2r x1 - Y2

>

I l vi

Since slL(Y 2 ) " Y2 t ' ,w1 and ix 1 - y2 1 4 y , the lemma follows. Q.E.D.

*--obf ft

* t . ' .2f . . f.f. t*f=t . . f t *t

ft f t . . t f t t t * t t t t f ff.-. 
. . . . . * f ~ t~* f t* ' ~ tS * f
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Theorem 3. lim ira sup I - O o.
A i ik(T/A

Proof. We use Lemma 2, where we identify Xj with x, and X, with

--G -
x2. Let n i [ik,ik + k) and set y, " X, y2 = X + so.. Thus [(Y 2) "

1h(N + con). Since 1 1 and 16(-) is a contraction and k - /e,

we can use the value A for y. Define = Xik " Then the

lemma yields

<NG(Xn + Gps) -(X + tp) , Xj- Xi k  > 4 eA/dk
dk

or, equivalently,

a+. X n " ~ X&k - Xjk > A/d k •

dk

Summing from ik to ik + k - 1 yields

Ik+k-I

(5.5) < Xik+k" " ! On ,Xik" >C A/dk.
1k

We next get an estimate for "ik~ k X . Use Lemma 2 again with x,

I-GA ,A ik+k-1 6(y2)
=Xjk , x 2 a , Y y Xik 'Y 2 -X k + eEoP. Then L(Y) = Xik+k

1k

and (using Y - A)

<Xi~ Nkj~- E pn ,Xik -XM > 4 O/dk'
=ik dk

.o.
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-,A -G-IA"-~

Subtracting (5.6) from (5.5) and defining Yik - X - Xik yields

, -9,A -. A
(5.7) <Yi+k - Y A /dk,> 2A'/dk•

Suppose that dk ) &1/S . Then (5.7) implies that the component of

Yik+k in the direction Y has magnitude less than or equal to 2A/dk +

dk 4 2As/ 2 + dk The bound j I. 1 implies that the projection of

E G,A IA hsmgiue 2.(nfc
Yik+k onto the hyperplane normal to Yl has magnitude 2& (In fact

-'A -- C,A /
Y -k+k " Yik I c 2&) Thus, if dk ) A /

2 3/2 2 2
dk+1 (2A + dk) + 4A

Let ki denote the maximum distance across G. Then (for d k A1/  and

2A)S 4 1)

d 2 ( (2 + 4 k)A + 4A2 + dk

or, in general

2 1/2 T S/u.
dk 4 max (6 + 4k 1) A

Q.E.D.

-. ., ., ._,' 2,,i, ' .:..,. .::. ... :.:.-,.. .-....... :: -. .-....-. ..
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It follows from Theorems 2 and 3 that

heorem 4 S(T,) is an action functional for x6 (.)) and (2.5) hoLdI.

rf Fix the set A, and let * i AO. Using (5.3) select 5 > 0, 61 > 0

such that N6() c AO and for small A

It then follows that

m., log Px"'(.) A)

: 1j mt , log P.fd(x (.) ,(.)) < S)

Jim ur..laL s log P1 (d(x*AA(.),*(.)) < c

S - (T~O)

where the last inequality is due to (3.9). This gives the left hand side of

(2.5).

Since the estimates in Theorem 3 are independent of the particular *

chosen we have

P. €. , A) P.fxh,.,, is N ,(A))
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for any S > 0 and small enough 6,A. Hence by (3.8)

lim a log P,(x,(.) s A)56

.Jlim inf SG(T,*).
ONGN6 (A)

Since by l.s.c.

,im. inf Sr(T,.)
S sN S(A)

" ) inf S o;(T ,*) ,
OaA

the right hand side of (2.5) is proved. Q.E.D.

. . -
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VI. Mean Escane Time.

Let e be an asymptotically stable point of (6.1), and D a neighborhood

(relative to G) of e with D in the domain of attraction of a

(6.1) x - ((x))

Let -r'D denote the escape time of x6 (.) from D. Then, under some

additional assumptions, we will prove the analog of the classical case [6], [10],

namely

(6.2) lim 6 log Ei = SD(e), x s D.

where

SD(e) - inf (S0 (T,*): *(0) - es(T) OD)

All neighborhoods are relative to G.

In order to avoid excess detail, we work with the non-degenerate case,

(see below (2.6)) but the results hold for the non-degenerate case as well, if we

assume the existence of the 4F(.) discussed below (6.3).

Since

LG(Dx) = inf L(b(x) + ux)

u fl;(x,b(x) + u) - p

and L(a,x) = 0 if and only if a= b(x) , we have
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(6.3) LG(D,x) - 0 iff p - fl](x,b(x))

Loosely speaking, we 'pay' only when noise or 'control' u is required to

force a deviation from the (free) path of (6.1).

For each small p, > 0 and Np (8) there is a p, (p, - 0 as p- 0)

and a To such that all paths of (6.1) starting in D reach Np1(e) by time

To  and do not leave Np2(o) after first hitting ONpi(e). By the

non-degeneracy assumption L(b(x) + u,x) is strictly convex in u and equals

o(u) uniformly in x e 0. This implies the following. For each p > 0

there are T < , and p, > 0 (p1 - 0 as p -. 0) such that for each x e

Np,(O) there is a path e(.) such that q(O) = x, *I(tx) - e for some t 4

T and S,(tx, *x) 4 P.

It is sometimes convenient to define 4F for t > tx without increasing

the cost. To do this, we let 40(.) satisfy (6.1) beyond t. For suitable P2

(going to zero as p and pt -. 0), we can suppose that F(.) never leaves

Np2(e).

Define (if the set is empty, define the inf to be a)

SD(X) = inf (SG(T,0) *(O) = x, *(T) 4 D, T < a).

Given 6 > 0, there is a T5 < and for each x s D a path V(.)

on the interval [0,Tit] such that V(0) - x, JV(tx) i OD at some f T6,

IX(.) satisfies (6.1) after ft and S0 (TS,4x) 4 SD(x) + S. This fact, which

will be used frequently in the sequel, follows from the following two

observations:

• . . .. ..q .. ' .. .. . .. .. . .'. ., .. . . . . . .. . .'.-.- . , . . . . , ." . . ' ' n ,* " ' ; ' .'•
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(1) For each p > 0 and any set of paths in G with uniformly

bounded costs, there is a T < - such that the paths must spend all

but at most T units of time in N (0);

(2) There is a T; < - and paths 4(.) on the interval [0,T ] taking

x E NP(G) and then to e and then to OD at some time 4 T', with

cost 4 SD(O) + P,, where p, - 0 as p- 0.

We will next show that SD(X) - SD(e) as x - a By the comments in

the previous paragraphs, SD(X) 4 SD(e) for x a D, since x can be

connected to e by a path with arbitrarily small cost. If lim SD(y) = a,

y-,e
then we are done. Thus, we need only work with sequences x- 8 such

that sMp SD(xn) < e. Let x. - e and fix 6 > 0. There are 4(.) and
bounded T-6 (by, say T) such that €(0) - xh, *D(T S ) E OD and S 5(T A, '

I~~~ ' t, TOle r

SD(Xn) + 6. For n t Tn, let 4g(1) satisfy (6.1). Choose (and index

by n) a convergent subsequence of (T-6, on6(.)) with limit (T,or(.))., Then

00(0) - e and o6 (T) E SD. By the l.s.c. of So(T,.),

. + lim SD(x.) li.m S(T,oX ' S0 (T,o) - S(T,*) ) SD()
n n

Thus, since 5 is arbitrary

(6.3) lim SD(x) - SD(e).

x-.
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Assumotions. We carry over the assumptions from Sections I and 2. For

the escape time problem one must redefine the b(x) and H(aox) of (2.1)

and (2.2). Let Bm be the minimal a-algebra measuring ( , i C m) and if

M is a stopping time for (,), let BM denote the associated c-algebra. If

,i is a stopping time for the continuous parameter process xE(.), we use

B,(r) instead of B17r/ 1  Suppose that the limits in (6.4) and (6.5) exist

uniformly in the stopping time M, in m , and in (x,a) in any compact set,

and that H( .,x) is differentiable. Those roerties hold for the processes

listed below (2.2).

a+M-1
(6.4) b(x) = lim E E b(x,t,)

n n " BM

1 n+M-1

(6.5) H(ax) = lim -log E exp a' r b(x, j)
n n -M M

For .r a stopping time for xE(.), let P denote the conditional

probability measure of the process x(.) which is reset to x at time -r,

then evolves as before (using (4/, +j j ) 0) after time -r), conditioned oM

the data BE(T) uLJ to r. Define S%(T,A) = inf SG(T,*). Then for each T
OeA

< .. and A c C,[O,T], we have

i lira

(6.6a) SG(T,A °) C e * log PX,(T)(x'(-r+ ) A)

4 lim G log PX,R (v)(xg(7 + ") * A) C - SG(T,A)
6

..................................................................
..............................................................
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The 'rate' at which the inequalities hold is uniform in r and w in the sense

that (e.g), for each h > 0 there is so > 0 such that for all T,w and E (

(6.6b)exp - [SG(T,A0) + h]/e E P.,E (T) (X6(r+-) e A) 4 exp - [SG(T,A) - h/E.

The 'uniformity' in (6.6) follows from the uniformity of the convergence

in (6.4) and (6.5) in the same variables (om). In fact, our derivation started

with (3.2), (3.3), obtainable from [6]. It follows from the derivation in [6]

(although not mentioned explicitly there) that the probability in (3.3) can be

replaced by P ,BM((Y *A, i 4 N) E B) with the 'rate' at which the

inequalities hold being uniform in all variables (t^M) in which the

convergence in (6.4), (6.5) is uniform. Here, P.,B denotes the probability

measure (conditioned on B.) of (X) (or {Y *,A)) r= to x at time

M then evolving as before (using tj+mJ % 0, after M).

We will make one additional assumption. Let DS denote a

5-neighborhood of D with Do - D. Then, clearly, S% (e) decreases as

5 s 0. We assume that S 1 () a SD(S) as 5 t 0. If this condition doesn't

hold for D it will hold for an arbitrarily small perturbation of D. If e

lies in the interior of G and if the optimal exit path does not hit &G, then

this condition is implied by the non-degeneracy assumption.

Theorem 5, Under the assumntions in the above subsection, (6.2) holds,

Ii i ... .' .' -. --, , --. --' , -. -,, ': '. ' •' ' -'.. .' ' -.'' ',., . .. . ',.: . - .", . . ., - .- , . .. ' .' ., - '., .., ..-, .. .,. .. .•,



-36-

Proof. Prt 1. We follow (101 as closely as possible and omit details when

they are sufficiently close to those in [10]. Assume SD(B) < a. Otherwise, a

similar proof yields the result (in fact, x'(.) cannot then escape D with

full probability for small s). Let 0 < Mt < , go3. Def ine so

N (e), ro - N,,.-N(8), with all N (e) contained in D. Define the

-stopping times (q,ri) by To - 0 and

a n = inf( t > r: E(t) a r.)

Irn -inf ( t > at,, xE(t) s go U (G-D)),

and set ZD = x (rn 0 For rotational simplicity, we omit the

--dependence on U. , T., Z.. We have (for x 6 go, otherwise we add a term

Ex-r,, which is bounded uniformly in x and s, to (6.7))

(6.7) Ex * I - E, l(zn s g)Ez 3G t)(Tn+ - Tn)

0

The theorem will be proved via estimates of the terms in (6.7).

We have, for x c go,

(6.8) inf E (,B,(.) (u+, - a.) 4 Es,((T(+1 -'r.)

. sup E+,Dlqu)(T+l - ) sup ,D .)(% -r.).
.y i ro n y a g0 n

° ,
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It can be shown that there are k1 > 0 (depending on the ji) such that the

left side of (6.8) is bounded below by k, and the first term on the r.h.s. is

bounded above by k (the latter fact follows from an argument similar to

that which uses Lemma 3 in Part 3 below).
• A

Let d > 0. Let *(.) denote a d/4-optimal path from 8 to ON (8),

and write h- -gs. For small q4, there is a T < a, (depending on t

but not on x) such that for each x f NP2(e), there is a path ;(.) taking

x to e with (cost 4 d/4) then (using the first part of (.) here) e to

ON 3(e), at a total cost no greater than d/2. Then, there is an I > 0 such

that for 1 4 i and all con

(6.9) p,,B(.r) (d(x('r+.), ,.) < h/2) ) exp - d/.

The i. can be chosen to be independent of x E N P2(e), although we omit

the details, (The argument is similar to that used below to get the uniform

bound on the terms in the sum in (6.16).)

Let p + To a  an denote the first escape time into ro  after -r.

Then (in this calculation, we let xE(r.) a go, but for simplicity we omit the

associated notation)

U

(6.10) EXB .r n )a T r Px (P > roT).

By (6.9)

1.

. . - .n nu nu IN . ", - . _. _,
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PX~,B .r. > mT + T) - E,,.N(,1P, + (p. -(V mT T) .U >•T.

+ M1I) mT

4 EX,B G n)[ - exp- d/] I(P > MT,

[1 - exp- d/] m+l.

Thus (.)p 4 T exp d/s for small s.

Putting these estimates together yields that (up to a multiplicative factor

in [k,k s + Texp d/21 for arbitrarily small d), (6.7) equals

S

0

which we evaluate next.

Pat 2. Fix d > 0. For small 14, there are So > 0, t < and h > 0

such that for each x i go there is a function '(.) on [0,tl] connecting x

to e, then o to *Dh - &Nh(D) at some time tf 4 ti with the following

properties: 0(-) satisfies (6.1) after % So(tx,.x) - S0 (t1 ,;x) 4 SD(S) + d/4;

the distance from the set go of the part of the path from first exit of ro

to first reaching Dh is ) 6o; the distance from the set ro of the part of

the path which connects x to 9 is ) So. A similar construction was used

in [10, p 124]. The fact that the minimum cost for hitting *Dh is close to

that for hitting OD (for small h) follows from the last

*.*; .~~...***,.*&..~* -..
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assumption stated above Theorem 5. Let 1 - min (Soh). Then there is an

s o > 0 such that for s ( a. (we compare functions on the interval [O,h]

here) and x c go,

(6.12) PX,BG(.r)(Z,+ 1 4 D) )

PxB 6 (rnl (d(x 6 (irn + -1, *x.) ; 51)

10 exp - [SD(e) +d/2] /i

As for (6.9), a can be chosen independently of x a go. We have

PX(Z+ 1 ' ga = P(lrD, > r,+) - ExI'P. .(Zn+s 6 go)Ilz ox s go)•~n

Using (6.12) to get an upper bound on the bracketed terms and iterating yields

(6.13) Px(Zn+I a 9o) 4 [1 eXp - (SD(S) + d/2) /e] n+ l

which yields the upper bound. exp [SD(S) + d/2) /a on the sum in (6.7)

when the (r,+, -r n) terms are dropped from the sum).

Part 3. To complete the proof, we need the following Lemma, whose proof is

very similar to that of Lemma 1.9 of (10, Chapter 61 and is omitted.
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Lemma 3. L1 K hi compact MeI in G which d=s contain aA

entire limit a2 (6.1), ad~ kt y de~note IL stonoine Limi £ x"(.). pefine

rK - mint: xl(T + t) 4 K). Ihen th ar c 0, T < ,o > 0 suh

IMIfor( E Lm dLl y. K ad .i. T

Py,.B,,(-rl ('rK > T)

4 exp- c (T- TO) /

Continuing with the proof of the Theorem, we have for any t2 < a

(6.14) Px,B,(T)(Zn+l 4 g 0 ) Px,BC(r ) (Zn+1 4 D)

Sup P, . (Zn+1 4 D)Y e roM

- sup PyB( (a ('u+l-a.n t3)
, E ro..

+ sup P, 3 (ad) (Tn+,-oa 4 t2, Zn+j 4D)
y i r0 ,u

By Lemma 3, for any k < - , there is a t <- such that for small u

the first term after the inequality of (6.14) is C exp - k8 /s. Fix d > 0. We

next show that

• o*.',.'.'.." ...,...'. o-....:.,..,. o' , ., ',: .. ,.....'.',.'.'.,'.',.........................-......................,..,, ,,,,
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(6.15) sup Px,B(an) (Tn+ s  an 4 t2 ,Z,+, 4 D) 4
x * roto

exp - (SD(S) - d) /a

for small 6 > 0.

Let sup lIil 1 k4 . The set Q of all piecewise linear interpolations

of all paths xe(.) on [O,%] (over all a, initial conditions x £ ro . and an

arbitrary k,-bounded sequence (ti) used in lieu of {i}) is equicontinous.

Let Q, denote the closure of the subset of functions in Q with initial

condition x, and which hit eD at some t c tr  For small g and

*() a Qx , SG(t 2 *) S SD(O) - d/4. Given 6 > 0, there are NS < * (not

depending on x # To) and (4f (.), i 4 NS) in Qx forming a 6/4-net

on Qx" Note that if xn - x and ,n(.) (.), then s(.) • Q,, Now,

(6.16) sup Px,1 . (c6) (T,+" -n 4[ t, Z,+j 4 D)

Ns
E sup Px 6 (a )(d(xl-(.), (-)) 4 6/2)

We now show that the r.h.s. of (6.16) can be bounded independently of

x 6 ro.  By (6.6) for each x • f o  there is an i(x) > 0 such that for

sup P (d(x"(.), 4 (-)) 4 5/2) < exp - (SD(o) - d)/.

If in Z(x) - 0, then there are x a F0. (.), ,, 0, x, -, (ir), .) -
r-o.

,e.,.- S.....,.-.-"..;. ... ;.'.'..;.",. ."." ... '.. .' .-..... .\.-,- . . .- .,.j . , .. , ..-.. ,... .. ....4" - ,, .- ,,
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(-")-such that on a set of positive probability for each m,

(6.17) PKdB'. (a.) (d(x (-), *im(.)) 4 5/2) ) exp - (SD(o) - d)/Em.
M 

A

Again, by (6.6), there is an a > 0 such that for a 4 E and large m and

all 0

; (6.18) exp (SD(*) - d/2)/, b (d(x(.),*(.)) c 6)

""PzurB(qn)dlxl(-)AI ) C6/2)

This contradicts (6.17). Thus, we can bound the r.h.s. of (6.16) above by

(6.19) NG exp - (SD(e) - d)/6

for all x~u~n and small a.

Define v = min(n Za 4 go). For small a,

Px(v > n + 1) - a , all j c n+ 1)

Ex Pxglal).IC) )(Z,+l 6 £o)I(V >

(6.20)

in [f PY,(,) (Z,+3  4dgo]P3, (v > n)

Y' a r0.an

(I- exp- [SD(o) - 2d] /e),,+.
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This, together with (6.7), (6.13) and the arbitrariness of d yields the theorem

since the E5 'B -r )(.r+ - ,rd values lie in the interval [k1,k2 + Texp

d,1a1 for arbitrarily small dj, as shown above. Q.E.D.



7. Remarks and Extensions.

7.1 Exit Doints of xf(.) frm D. Let there be a finite number of points

Y1..... q e OD such that

inf inf SG(T,*) inf inf SG(T,,),
T>0 *aAi  T>O OaA

where A - {.) , CO0,T) : o(T) - y1), A - l. C0,T]: ,(T) c OD).

Then, as in [101, for each x s D and s > 0,

9

lim Px(d(xl'(rD), u yi) < B) -. 1.
16 S

7.2. Global behavior of xl(.) on [0,6I. Assume the non-degenerate case.

Let Kl,..., K s  denote a collection of disjoint compact sets, each one of which

is a limit set for (1.2), and such that U Ki contains all the limit sets for

(1.2). If K1 n KG 0 9f, let K = ot, a single point. For a diffusion with

small noise, [10, chapter 7] obtains the (asymptotic) probabilities of transition

from a neighbohood of K to one of K,, and the (asymptotic) mean times

spent in a neighborhood of any subset of (K, i 4 m), before exiting to a

neighborhood of another subset of the (K, i 4 m).

Although our process is not Markov, similar results can be obtained here.

Let 8j denote a p-neighborhood of K, and let r, denote the set NI (K J)

. (K). Define %0 - 0, a. inf (t > -r.: x•(t) o y ri} and -r - inf(t >
o2

00+1: xI(t) i U g8). Set Za = xG(r.). Via the methods in the last section,

*o .~ .~~. . . . . .

C... C * ~ *~ * * C~ . * '. ~ * . . C1

* .i*... C *
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one can get upper and lover estimates for P,,B 4.r Z,+j a gj) for

x a gi. These would then be used to obtain the results of [1O, Chapter 7]

exactly as the Px(Z3 +1 e gj) are used in the Markov process case of that

reference. All the limit expressions carry over, with use of our action

functional SG(T,*) in lieu of the action functional SOTW() of [10].

B. . B .*B%
~

. . .

S.B

: ,:. ,....,.*B:..-,.-, . .. ....,. ,. ..... ..... ,.- ... ..... .. . .. . . . ,--
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7.3. Stochastic approximation. Let an~ > 0, a.~ 0, Ea0 . The results of

Sections 1 to 5 can be carried over to the projected stochastic approximation

where we use the conditions on ftj) and b(.,.) of Section 2. Define

t. Ea and the shif ted processes
0

n 3 a n
-i+ n(XJ + aib(Xj, ) j U , X xv

x3(t) -X+ 1 (t -ti + td) X' (t -tJ+ 1 + t,.) on [ti tn, tj.~. Q-

tj+1 -ti

-n min (t: xn(t) J D).

References [8], [13] deal with the (unprojected) SA problem via large

deviations. It is easy to incorporate the method of [81 with the 'projected'

case of this paper, by accounting for the 'time varying' scaling (an). We cite

only one result (the Kiefer-Wolfowitz case can also be treated).

For a. - /n, use the action functional

S0;(T,*) r f s L0 (., ,*O)ds,
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and for an -l/n a < 1, use Sr(T,) J JLG(s,.*.)ds. Then for

A c q(O,T],

inf SG(T,*) ( lim a. log Px(xn(.) s A)
n

lm an log PX(x) s A)

• - inf SG(T,*)

Let A (.) :() x, (t)4 D, some t 4 T), x c D, where we define

o and D as Section 6. Then, under the 'continuity' condition on OD just

above Theorem 5,

lim iim an log P,(-rn T) - -inf S0 (T,*).x . n O
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